Interactions between posture and locomotion: motor patterns in humans walking with bent posture versus erect posture.
نویسندگان
چکیده
Human erect locomotion is unique among living primates. Evolution selected specific biomechanical features that make human locomotion mechanically efficient. These features are matched by the motor patterns generated in the CNS. What happens when humans walk with bent postures? Are normal motor patterns of erect locomotion maintained or completely reorganized? Five healthy volunteers walked straight and forward at different speeds in three different postures (regular, knee-flexed, and knee- and trunk-flexed) while their motion, ground reaction forces, and electromyographic (EMG) activity were recorded. The three postures imply large differences in the position of the center of body mass relative to the body segments. The elevation angles of the trunk, pelvis, and lower limb segments relative to the vertical in the sagittal plane, the ground reaction forces and the rectified EMGs were analyzed over the gait cycle. The waveforms of the elevation angles along the gait cycle remained essentially unchanged irrespective of the adopted postures. The first two harmonics of these kinematic waveforms explain >95% of their variance. The phase shift but not the amplitude ratio between the first harmonic of the elevation angle waveforms of adjacent pairs was affected systematically by changes in posture. Thigh, shank, and foot angles covaried close to a plane in all conditions, but the plane orientation was systematically different in bent versus erect locomotion. This was explained by the changes in the temporal coupling among the three segments. For walking speeds >1 m s(-1), the plane orientation of bent locomotion indicates a much lower mechanical efficiency relative to erect locomotion. Ground reaction forces differed prominently in bent versus erect posture displaying characteristics intermediate between those typical of walking and those of running. Mean EMG activity was greater in bent postures for all recorded muscles independent of the functional role. The waveforms of the muscle activities and muscle synergies also were affected by the adopted posture. We conclude that maintaining bent postures does not interfere either with the generation of segmental kinematic waveforms or with the planar constraint of intersegmental covariation. These characteristics are maintained at the expense of adjustments in kinetic parameters, muscle synergies and the temporal coupling among the oscillating body segments. We argue that an integrated control of gait and posture is made possible because these two motor functions share some common principles of spatial organization.
منابع مشابه
The role of load-carrying in the evolution of modern body proportions.
The first unquestionably bipedal early human ancestors, the species Australopithecus afarensis, were markedly different to ourselves in body proportions, having a long trunk and short legs. Some have argued that 'chimpanzee-like' features such as these suggest a 'bent-hip, bent-knee' (BHBK) posture would have been adopted during gait. Computer modelling studies, however, indicate that this earl...
متن کاملQualitative Comparison between Rats and Humans in Quadrupedal and Bipedal Locomotion
Bipedal (Bp) locomotion is one of the most characteristic motor behaviors in human beings. Innate quadrupedal (Qp) four-legged animals also often walk bipedally. The walking posture, however, is significantly different between the two. This suggests that although both have a potential to walk bipedally, however, the human has a body scheme suitable for Bp locomotion, probably its skeletal syste...
متن کاملPosture, gait and the ecological relevance of locomotor costs and energy-saving mechanisms in tetrapods.
A reanalysis of locomotor data from functional, energetic, mechanical and ecological perspectives reveals that limb posture has major effects on limb biomechanics, energy-saving mechanisms and the costs of locomotion. Regressions of data coded by posture (crouched vs. erect) reveal nonlinear patterns in metabolic cost, limb muscle mass, effective mechanical advantage, and stride characteristics...
متن کاملInteraction Effects of Posture and Uneven Ground on Able-bodied Walking Kinetics
Interactions between trunk orientation and gait kinetics are proposed to be inevitable for maintaining dynamic balance, and these interactions are unknown for walking on uneven ground. The purpose of this study was to investigate the interaction effects of posture (regular erect, 30°, 50° and 70° trunk flexion) and step category (unperturbed, perturbation, preand post-perturbation) on able-bodi...
متن کاملMuscle force production during bent-knee, bent-hip walking in humans.
Researchers have long debated the locomotor posture used by the earliest bipeds. While many agree that by 3-4 Ma (millions of years ago), hominins walked with an extended-limb human style of bipedalism, researchers are still divided over whether the earliest bipeds walked like modern humans, or walked with a more bent-knee, bent-hip (BKBH) ape-like form of locomotion. Since more flexed postures...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 83 1 شماره
صفحات -
تاریخ انتشار 2000